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Sensitivity Analysis of Lossy Coupled
Transmission Lines

Stephen Lum, Member, IEEE, Michel S. Nakhla, Senior Member, IEEE,
and Qi-Jun Zhang, Member, IEEE

Abstract —An analysis method, based on the numerical inver-
sion of the Laplace transform, is described for the evaluation of
the time domain sensitivity of networks which include lossy
coupled transmission lines. The sensitivity can be calculated
with respect to network components and parameters of the
transmission lines. Sensitivity analysis is useful for waveform
shaping and optimization. Examples and comparisons with sen-
sitivity determined by perturbation are presented.

I. INTRODUCTION

NALYSIS and design of interconnections in high-
speed VLSI chips and printed circuit boards are
gaining importance because of the rapid increase in oper-
ating frequencies and decrease in feature sizes. Improp-

erly designed interconnects can result in increased signal
delay, ringing, inadvertent and false switching [1]-[5). This |

phenomenon can be observed at the chip as well as the
system level and the interconnected blocks could be ana-
log, digital or mixed. With higher signal speeds, electrical
length of interconnects can become significant fraction of
a wavelength. Consequently, the conventional lumped
impedance interconnect model is not adequate in this
case. Instead, a distributed transmission line model should
be used.

A number of methods [6]-[9] have been proposed for
the time domain analysis of networks which contain lossy
coupled transmission lines. The common method found in
the literature is based on separate equations formulated
to describe the transmission line system and the terminal
and interconnecting networks in the frequency domain.
These equations are combined at the analysis stage. The
time domain response is obtained by applying the inverse
fast Fourier transform (FFT). The major difficulty with
this approach is when the analysis has to span a time
interval of several line transient times. For example, the
response of a lossless line with short-circuited termination
is of infinite duration. Consequently, it is impossible in
this case to compute the response using FFT. Recently,
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an alternative method [10] for the analysis of lossy cou-
pled transmission lines with arbitrary linear terminal and
interconnecting networks has been proposed. This method
is based on a unified formulation technique for the equa-
tions describing the transmission line system and the
equations describing the terminal and interconnecting
networks. The time domain response is obtained using
numerical inversion of Laplace transform (NILT) [11],
[12]. This method is more reliable than the FFT-based
methods since it does not suffer from the usual aliasing
problems.

The above methods are analysis or simulation tools
which allow the circuit designer to determine the re-
sponse of a given network. Human expertise is still re-
quired to study the effect of variance of network parame-
ters on system performance. Critical components which
can affect rise/fall times, overshoot/undershoot,
crosstalk, delay, etc. have to be identified through re-
peated circuit simulations. An important step is to use
optimization techniques to speed up the design process.
Transmission line effects such as crosstalk, delay and
reflection can be minimized at vital connection ports.
Application of powerful gradient based optimizers de-
pends on the knowledge of sensitivities of the output
responses. The direct perturbation approach of sensitivity
analysis reduces the efficiency of optimization and can be
very expensive if the number of optimization variables is
Iarge.

In this paper, a new method to evaluate the sensitivity
of networks containing lossy coupled transmission lines is
presented. The proposed approach is based on the nu-
merical inversion of Laplace transform and is more effi-
cient and reliable compared to other methods based on
FFT or the brute force perturbation technique. The de-
veloped tool can be used to identify critical network
components or provide gradients to optimization routines.

In Section II, a unified approach based on the modified
nodal admittance (MNA) matrix is used to formulate the
equations describing the transmission line system and the
equations describing the terminal and interconnecting
networks. The frequency domain solution for the network
and its adjoint are obtained at prespecified frequency
points. These prespecified points are determined by the
NILT algorithm which is described in Section III. In
Section IV the frequency domain sensitivity with respect
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to transmission line parameters is evaluated in terms of
the sensitivity of the eigenvalues and eigenvectors of the
propagation matrix. Sensitivities to physical parameters of
the transmission line are also taken into account. The
time domain response of the network and its sensitivity
are obtained from the frequency domain solution using
numerical inversion of Laplace transform. In Section V, a
summary of the computational steps is given. Finally,
Section VI provides a number of examples comparing the
sensitivity calculated using the proposed method and pez-
turbation.

II. ForMULATION OF THE NETWORK EQUATIONS

Consider a linear network = which contains linear
lumped components and arbitrary linear -subnetworks.
The linear lumped components can be described by equa-
tions in either the time or frequency domain. The arbi-
trary linear subnetworks may contain frequency depen-
dent or distributed elements that are best described in the
frequency domain. Without loss of generality the modi-
fied nodal admittance matrix [13] equation of the network
7 can be written as

dv,(t)
C dt

N,
+Gu (1)+ Y Dyip(t)—e (t)=0 (1)
k=1

where
C (1) e RVNx G_(r) € RN=>N» are constant matrices
with entries determined by the lumped linear compo-
nents,
v (t)e RN is the vector of node voltage waveforms
appended by independent voltage source current and
inductor current waveforms,
D, =ld,;;l,d;;€{0,1},i €{1,2,-- -, N}, €{1,2,-- -, ny}
with a2 maximum of one nonzero in each row or column is
a selector matrix that maps i,(¢) € R, the vector of
currents entering the linear subnetwork k, into the node
space RV~ of the network 1,
N; is the number of linear subnetworks and
e (1) € R~ is the vector of source waveforms.

The frequency domain representation can be obtained
by taking the Laplace transform of (1)

A
[sC.+G V. (s)+ Y. D I(s)= E_ (s)+C,v_(0).

k=1
(2)

Assume the frequency domain equations of the linear
subnetwork k to be in the form
AV () = L (s) (3)
where V,(s) and I,(s) represent the frequency domain
terminal voltages and currents of the subnetwork %k and
A, represents the MNA matrix of the subnetwork.
Combining (2) and (3) produces

YV, =E, +Cwv.(0) 4
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Fig. 1. Example circuit used to illustrate formulation.
where
NS
_ ¢
Y,=sC_+G_+ Y D,A,D..
k=1

Example: The following matrices illustrate the formula-
tion for the network shown in Fig. 1:

[ G, -G, 0 0 0 1]
-G, G, 0 0 0 0
G - 0 0 G, 0 0 0
0 0 0 0 0 0
0 0 0 0 G; 0
L1 0 0 0 0 0]
[0 0 0 0 0 0]
00 0 0 0 0
c - 00 C, 0 0 0
10 00 C, 0 0
00 0 0 0 0
0 0 0 0 0 0]
id 00 0 0 0
I‘f 10 0 0 § 0
RLE _10 0 1 of, _|% 1o
Ve v, Di=lg 1 0 ol I E-=1
v 0 0 0 1 I, 0
0 0 0 0 E
L4 |

III. TimeE DoMAIN RESPONSE UsING NUMERICAL
INVERSION OF LAPLACE TRANSFORM

The application of the numerical inversion of Laplace
transform to the time domain analysis of lossy coupled
transmission lines is described in [10]. The method in-
volves the computation of the frequency domain function
at preassigned complex points and forming a weighted
sum. It exactly inverts a certain number of terms of the
Taylor series expansion of the time response and is thus
equivalent to the methods used for the integration of
differential equations. It has been shown that the method
is absolutely stable and that the equivalent order of
integration can be changed between 1 and 46 without
affecting the stability properties. The time domain re-
sponse for real time functions can be evaluated using the
following equation:

o
B(t)=—(1/1) ¥ Re[Ki¥(2,/0)];6>0  (5)
=1

where M’, K] and z, are related to the Padé approxima-
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tion of the exponential function

_ Py(2)
T 0n(2)

and Py(z) and Q,,(z) are polynomials of order N, M,
respectively. If M is even M’ =M /2 and K] =2K; oth-
erwise M’ =(M +1)/2 and K| = K, for the residue cor-
responding to the real pole.

Given the Laplace domain MNA representation for a
linear network containing lossy multiconductor transmis-
sion lines described in (4), the time domain response is

=§ Ki
i=1Z_Zt'

(6)

o
b.(t)=~(1/1) ¥ Re{K/¥;'(z,/t)

1=1
.[EW(Zl/t)_FC’ITvﬂ'(O)]}' (7)

The response at each time point is obtained from the M’
solutions to the network equation evaluated at the com-
plex frequencies s =z, /¢. From (7) it can be seen that
the solution at time ¢ is completely independent of solu-
tions at all other time points. If the circuit response for
time ¢ is all that is required this response can be calcu-
lated efficiently without calculating the response for any
other values of time. Using inverse FFT techniques the
entire waveform must be calculated.

IV. SENSITIVITY ANALYSIS

The time domain sensitivity of a linear circuit requires
the computation of the frequency domain solution at
prespecified complex frequencies. The adjoint method for
sensitivity analysis [14] provides an efficient method to
calculate the frequency domain sensitivity of a linear
network with respect to a parameter A. Consider the
system of linear equations described by (4). Define the
output of the system to be

o=d'V, (8)
where d is a constant vector.
. Differentiating (4) and substituting (8) results in the
final form of the sensitivity equation:

o pay Y v dE_  4C_ 0 9
el el 9
where Y!V?= — d. The solution to the adjoint vector V!

can be obtained with little additional cost because the LU
factors of Y_ are already available from the solution of
the linear network. Only forward /backward substitution
is required to obtain V2. The next step in determining the
network sensitivity requires the calculation of 3Y_/dA
and 0E_ /0A.

A. Sensitivity with Respect to Lumped Components

Network sensitivities to a specific component requires
the evaluation of dY_ /dA. In the case of lumped compo-
nents such as resistors, capacitors and inductors, the
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vector dE_ /dA is zero and
Y, 9C, IG,
— =S5t . (10)
A A 9

Example: Let A be a conductance G, connected be-
tween nodes i and j. The MNA matrix Will contain
entries for G, as follows:

L J
o i[G -6 (11)
~i|l-G6, G,

Differentiating (11) with respect to G, and substituting
into (10) yields

(12)

where e, is a vector containing the value one in location i

3y, .
N = (e;— ej)(ei - e])

“and zero elsewhere.

If A is a transmission line parameter the evaluation of
dY,_ /dA is relatively more complex and will be described
in the next section.

B. Sensitivity with Respect to Distributed Components

The lossy multiconductor transmission line [10] is as-
sumed to be uniform along its length with an arbitrary
cross section. The cross section of transmission line &
with N, signal conductors can be represented by the
following N, X N, matrices of line parameters: the induc-
tance per unit length L, the resistance per unit length R,
the capacitance per unit length C and the conductance
per unit length G.

Let y? be an eigenvalue of the matrix Z,¥; with an
associated eigenvector x;, where

Z, =R+ sL
Y, =G+ sC.

(13)
(14)

It can be shown that the terminal voltages (3) are
related by

Aka = Ik (][5)
where
S,E.S;! SE,S;!
kT 1 1| (16)
S,E,S," S.ES;
E, and E, are diagonal matrices
1+e 7P
E1=dlag{re‘"—"2'ﬁ’i=1"'Nk} (].7)
: 2 .
E2=d1ag ;m,l=l"‘Nk . (][8)

D is the length of the line,
S, is a matrix with the eigenvectors x, in the columns,
S;=2;'s,T and

I" is a diagonal matrix with T} ; =v,.
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Combining (4) and (9) produces

A
—V (19)

where V{ = D} V2.
To find 04, /9A, rewrite (16) as

LIS 07 [s 0B E, 2
o s,| |0 SI||E, E | (20)
Differentiating (20) with respect to A:
i (s, o] | ° |, E
a0 S| 0 s, ||E, E,
EN
JE, OF,
s oo m m
0 S||6E, OE,
A A
as,
JA 0
—_Ak aSU (21)
0
dA
where
s, as, ar oz,
Z,—=—TI+8,———3§,
A aA A A

From (21), it can be seen that d4, /dA is dependent on
the sensitivity of the eigenvalues y? and eigenvectors x,
of the matrix Z,Y;. Let

(¥U-2.Y,)x,=0 (22)
where U is the identity matrix.
Differentiating (22) with respect to A produces
v} o%; 9(ZLYL)
+ 52 —-———x —Z Y =0. (23
ax Ty ax Y (23)

This is a system of N, equations with N, + 1 unknowns.
To solve the system one more equation has to be defined.
An eigenvector can be normalized as follows:

xix,=1 (24)
Differentiating (24):
25 25
X, FR - ( )
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Now with (25) inserted into (23), a solution for the
partial derivatives of the eigenvalues and eigenvectors can
be found.

dx,
YzzU_ZLYL X; ax @x 2%
« oll ay2 |7 - (26)
- 0
23

To complete the solution, dE, /dA and JE, /JA have to
be evaluated. Differentiating E; and E, produces

’)/.

E A oA
—L! — dia : (27)
JA (1_ 6*27,0)

2 el 3_ (e V,D+87,D)
IE, aw
—— = diag (28)
22 (e77P —enPy”

Once all the separate partial derivatives have been
calculated and combined, the resultant d4, /A can be
inserted into (19) to produce the frequency domain sensi-
tivity d¢p /dA. It should be noted that A could be an
electrical parameter of the transmission line or a physical
parameter.

C. Sensitivity with Respect to Physical Parameters

Sensitivity with respect to the physical parameters of
the transmission line can be determined by extending the
algorithm described in the previous section. Physical pa-
rameters include length of the transmission line, width of
the conductors, distance separating conductors, etc.

Determining the sensitivity to physical parameters re-
quires the evaluation of the sensitivity of the electrical
parameters of the transmission line to the physical param-
eter. The electrical parameters can be obtained numeri-
cally [15]-[17] or, in some special cases, by using explicit
empirical formula [18]. In either case, using chain rule
expansion, the sensitivity of the output can be expressed
as

a¢ %% d¢ OR,, ¢ OL,,
+
e 1, Z1|9R,, oA AL, dA
a¢> aG,, ¢ aC,,

(29)

8G 8/\ aC, , dA

(2%

When determining sensitivity to the length D of trans-
mission line &, the calculation of d4, /4D can be simpli-
fied. From (26), the sensitivity of the eigenvalues and
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Fig. 2. Circuit for example 1, obtained by cascading circuit shown in Fig. 3.

eigenvectors to D is zero. Therefore

s JoE, sl g 6E2S_1
M_k= vap v ia_,S' v 30
T L B - (30)
1 ‘oD
where

oE —4ye 2P

it — (31)
aD (1—e27D)

) 2y (e P 4 enP

—2 < diag ( 2) . (32)
oD (e 7P —e7P)

D. Time Domain Sensitivity using NILT

Given a frequency domain response for the circuit
sensitivity d¢(s)/dA and using (5), the tlme domain re-
sponse is

y
MY T Re|k

=1

d(z; /1)
Pac)

The response at each time point is obtained from the M’
solutions to the sensitivity equation evaluated at the com-
plex frequencies s =z, /¢.

V. SuMMARY OF COMPUTATIONAL STEPS

The following is a summary of the sensitivity analysis
technique proposed in this paper:
Formulate Y_;

For j =1 to number of time points
Fori=1to M’

Solve for ¥, and V} at s=z; /1;

if A is a transmission line parameter
Calculate 04, /0A using (21);
Calculate d¢p /dA using (19);

else
Calculate 3Y, /dA using (10);
Calculate 8¢ /3A using (9);

end;

Add Vv, and d¢ /dA to the welghted sums of (7)
and (33)
end;
end.

VI. EXAMPLES

In this section a number of examples are presented. To
show the accuracy of the proposed method, each example
has been verified by perturbing the parameter A. The
sensitivity plots have been normalized to represent mV
change per 1 percent change in A. It should be mentioned
that the perturbation technique is computationally expen-
sive since it requires an extra time domain analysis for
each parameter A, whereas using the proposed method
the additional cost to evaluate the sensitivity with respect
to all parameters is less than the computational cost of
one time domain analysis.

Example 1. The circuit in Fig. 2 contains 35 single
lossless transmission lines. The circuit is obtained by
cascading the network in Fig. 3. The applied voltage is a
pulse shown in Fig. 4 and the time response of the voltage
Vo 1s shown in Fig. 5. The time domain sensitivities of
the output voltage V,,, evaluated using the proposed
method are shown in Figs. 6~9 which demonstrate excel-
lent agreement with the results obtained by perturbation
using HSPICE. The CPU time comparison is listed in
Table I. The comparison was made on a Sun SPARCsta-
tion IPC.

Example 2: The circuit shown in Fig. 10 contains two
coupled lines highly interconnected by a terminal net-
work. The first transmission line has four conductors, is
0.3 meters in length, and is described by the following
parameters:

1S 018 0 0
_lo18 15 018 o
L=1y 018 15 0.8 |“H/™
0 0 018 15
0266 —002 0 0
| -002 0266 —002 0
C=1 9 ~0.02 0266 —002 |MF/m
L0 0 —0.02 0266
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c=1oogp
=60 /m
25Q 5nH D=003m
1pFI 0.5pFI 500
C=120 pffm B - =
L=60
25Q 6nH D=003m 50
75Q 10 0H 1pFII O.SpFT 1pF
+ = - - C =100 pF/m
=60 nH/m

Fig. 3. Basic circuit block for example 1, transmission lines with terminal networks.

™
T

—

0

0 02 04 06 08 1 12 14 1.6 18 2

Time (seconds) x10-¢

Fig. 4. Applied input voltage waveform used for example 1.

and R=0, G=0. The second transmission line has two
conductors, is 0.4 meters in length and is described by the
following parameters:

_[750 95

L‘[95 750]“H/m’

[ 0133 —0.009] o
S [ —0.009 0.133] nk/m

and R=0,G=0.

Fig. 11 is a plot of the applied voltage. The circuit
response of the voltage V,,, using NILT is shown in Fig.
12. The time domain sensitivities of the output voltage

x10+4

081

04r
++ NILT
~ HSPICE

02r

0

0 02 04 06 08 1 12 14 16 1j8 2

Time (seconds) x10-8

Fig. 5. Transient response of the circuit shown in Fig. 2 at node V.

V,.: are compared with the perturbation method in Figs.
13-16.

Example 3: The circuit in Fig. 17 contains three lossy
coupled transmission lines. The lengths of transmission
lines 1, 2, and 3 are 0.05 m, 0.04 m and 0.03 m respec-
tively. The transmission line parameters for the three

lines are identical:

4946 633

L=| %633 494.6]“H/m’

[ 628 —49

C=1_49 62.8] pF/m,

[75 15 _[ 01 -o0.01
R=]5 75]9/1“’ G [-0.01 0.1 | S/m
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Relative Sensitivity (mV)

Fig. 6. Sensitivity of voltage V.

Relative Sensitivity (mV)

Fig.

Relative Sensitivity (mV)

Fig. 8.

x10-3

_+ » Proposed Metheod
— Perturbation using HSPICE

02 04 06 08 1 12 14 16 18 2

Time (seconds) peling

with respect to C; of Fig. 2.

out

x10+
0
RS
2r + + Proposed Metheod
st — Perturbation using HSPICE
41
Eis 1
6} i
7k 4
8+ J
gtk 4
-10 . . . . - :
0 02 04 06 08 1 12 14 16 18 2
Time (seconids) x10-4
7. Sensitivity of voltage V,,,, with respect to R, of Fig. 2.
x10-5

08

0.6

04

02

02

04

0.6

08

Sensitivity of voltage V,,, with respect to the inductance per

+ »+ Proposed Metheod
— Perturbation using HSPICE

0 02 04 06 08 1 12 14 16 18 2

Time (seconds) x10-é

unit length of transmission line #7 in Fig. 2.
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x10-4
15 . .
s
E
S
5
&
é
%
& + » Proposed Metheod
— Perturbation using HSPICE
1t .
15 L . . : . .
0 02 04 06 08 1 12 14 16 18 2
Time (seconds) x10-8
Fig. 9. Sensitivity of voltage ¥, with respect to the capacitance per
unit length of transmission line #35 in Fig. 2.
TABLE I ‘
CPU ComparisoN BETWEEN HSPICE anD PROPOSED METHOD
Number of CPU Seconds Speedup
Parameters HSPICE Proposed Method Ratio
10 382.8 343 11.2
All 7516.8 60.3 124.7
so@ Vs
' Line #2
800pF] |
R, =200Q

1
200 ﬂ%

Fig. 10. Circuit for example 2, two multiconductor transmission lines
with terminal networks.

The applied voltage for this example is shown in Fig. 11
and the circuit response is shown in Fig. 18. The time
domain sensitivities of the output voltage V,,, are com-
pared with perturbation in Figs. 19-22.

Example 4: In [18] formulae for calculating the induc-
tance and capacitance of the transmission line shown in.
Fig. 23 are provided. The transmission line consists of two
flat conductors near a ground plane. Assuming a lossless
transmission line, the transmission line parameters can be
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12 02
0.15
~ 01
5
4 £
2
é 0.05
> ] 3
2 0
k]
[53
1 # 005
— Proposed Method
++ Perturbatton Method
] 0.1F 3
-0.15 s L n L s L
00 0.2 o o o5 : - 0 05 1 15 2 25 3 35 4
| Time i 0% Tune (seconds) x10-8
1me (secon: x I
Fig. 11. Applied input voltage waveform used for examples 2 and 3. Fig. 14.  Sensitivity of voltage V5, with respect to R, of Fig. 10.
8
s
g
2
2
g
> 3
H
o
=
&
4
— Proposed Method
+ + Perturbation Method
6k 4
8 1 + L 1. I 5. 1 I
04 . . . . : . . 0 05 1 15 2 25 3 35 4
o 05 1 15 2 25 3 35 4
Tme (seconds) x10-8
Tune (seconds) x10-8

Fig. 15. Sensitivity of voltage 1, with respect to parameter L, ; of

Fig. 12. Transient response of the circuit shown in Fig. 10 at node transmission line #1 in Fig. 10.

v,

out*

1
0.5 J
s
~ &
S =
& g |
2 0 3
£ g
@ 173
£ 05 §
= — Proposed Method i
s — Proposed Method
&~ tion Method
++ Perturbation Me ++ Perturbation Method
alk N <03+ 1
04 s . \ . L
s ) ) 0 0s 1 15 2 25 3 35 4
05 1 15 2 25 3 35 4 Time (seconds) x10-8
Time (seconds) x10-8

Fig. 16. Sensitivity of voltage V. with respect to parameter Cy, of
Fig. 13. Sensitivity of voltage ¥, with respect to C, of Fig. 10. transmission line #1 in Fig. 10.
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Transmission
Line #2

I “"“I

A/

out

]

2
=
v

Q
§[ 50Q 100Q

Q
AN\ —
Transmission
Line #3
—

500 ) -
.
10nH }
Fl 8’\

1p
1000 |

Fig. 17. Circuit for examples 3 and 4, interconnect model with lossy coupled transmission lines.

01 . . .
0 02 04 0.6

Time (seconds)

Transient response of the circuit shown in Fig. 17 at node
V,

out*

12

x108

0.5

04

03

0.2

0.1

0.2

— Proposed Method
+ + Perturbation Method

03r

04t .

035 02 0.4 0.6 038 1 12
Time (seconds) x10-8

19. Sensitivity of voltage V,,,, with respect to C; of Fig. 17.

Relative Sensitivity (mV)

— Proposed Method
+ + Perturbation Method

0 02

04 0.6 0.8 1 12

Time (seconds) x10-8

Fig. 20. Sensitivity of voltage V,, with respect to R, of Fig. 17.

Fig.

0.03 T

002

0.01

001

-0.02

Relative Sensitivity (mV)

— Proposed Method
+ + Perturbation Method

003+ B
004t 4
0051 =4
-0.06 : . . . :
0 0.2 04 0.6 08 1 12
Time (seconds) x10-8

21. Sensitivity of voltage V,,,, with respect to parameter R;; of

transmy

ission line #2 in Fig. 17.
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(3
&
- 03p — Proposed Method
04k ++ Perturbation Method 1
0.5 " . N . J
0 02 04 0.6 0.8 1 12
Tirhc (seconds) x10-8
Fig. 22. Sensitivity of voltage V,,, with respect to parameter Ly, of

transmission line #2 in Fig. 17.

determined with the following equations:

' w €,€g 2
Ci1=Cp= ErGOKC1(z) + = KLlKCI( h )
2h\?
XIn 1+(7) F/m (34)
+€0 w?
Ci,=Con = 4 Lchl( A )
2h\? .
X1n 1+(7) F/m (35)
Beteg (B Krto
Ly =L;,= K (‘)_
L1 w 477
2h\? A
XIn 1+(_Zl_) H/m (36)
C(2h\?
L, Lz,lz“'”‘)l 1+(~d—) } H/m - (37)
K 1207 (h) (38)
- ZO(€r=l)
2
1207 €,cfh) (h)
Kq = 1/ : — (39)
< [ZO(E,—I) K€, \w
8h w w
Zo(e,_1)=601n(—+E)Q for —h—<1 (40)
7 1207 Q
0e,=1) "~ w h h 6
—+2.42~0.44(—)+(1——)
h : w w
fi Y 1 (41
- >
or Y (41)
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PWB Laminate, £,

Ground Plane

Fig. 23. Two conductor transmission line near a ground plane.

Relative Sensitivity (mV)

— Proposed Metheod
+ + Perturbation Method

0.1F

015 - ‘ — :
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Fig. 24. Sensitivity of voltage V., with respect to the ratio w/d of

transmission line #2 in Fig. 17.

where

, is the relative dielectric constant,

=10"%/367 F/m is the dielectric constant in vacuum,
€ (eff) is a function of 4 and w described in [18],
,u is the relative permeability and

=44 X10~7 H/m is the permeability in vacuum.

Usmg w=0.58 mm, #=1.17 mm and d = 2.49 mm, the
following matrices of transmission line parameters are
obtained:

_1493.11 63.04

L‘[ 63.04 493.11]nH/m’
_ | 69.62 —-7.09

€= [ —7.09 69.62}91:/“1‘

The circuit in Fig. 17 is used for this example. The
transmission lines have the parameters listed above with
the length of the lines being 0.05 m, 0.04 m and 0.03 m for
transmission lines 1, 2, and 3, respectively. Fig. 24 is a plot
of the sensitivity of V. to the ratio w/d of transmis-
sion line #2 keeping the ratio of 4 /w constant.

VII. CoNCLUSION

An analysis method, based on the NILT aigorithm, has.
been described for the evaluation of the time domain
sensitivity of networks which contain lossy coupled trans-
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mission lines. The sensitivity can be calculated with re-
spect to network components and electrical and physical
parameters of the transmission lines. The efficiency of the
proposed method makes it useful for determining critical
network components and -for generating sensitivities of
output responses used in gradient based optimizers. A
number of examples were presented showing the accuracy
of the method compared to the perturbation technique.
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